Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 2, 1996

TEMPERATURE FIELDS IN A TWO-LAYERED PLATE
WITH A SEMI-INFINITE SLIT-ALONG THE INTERFACE

B. V. Nerubailo and L. G. Smirnov UDC 539.412

In this paper, we study steady temperature fields in a two-layered plate containing a semi-infinite slit
along the interface. It is assumed that the heat conduction coefficient is constant at the boundary and that
outside of the slit the contact is ideal. To obtain a solution we use an analog of the Wiener-Hopf method.
Calculations are illustrated by curves of temperature field distribution along the sides of the slit.

We assume that the heat-conducting layers (0 < y < k1, —0 < 2 < +o0) and (—h2 < y < 0,
—00 < z < 0) are in ideal contact when z > 0 and are thermally insulated from one another when z < 0.

The heat conduction equations for the layers are written as

*T; 9T
AT; 22 + 9y? 0 @ 1,2); (1)
the boundary conditions are
0T; .
a2 = (6T +75) (G =12 y1=h, y2=—hg), (2)
y=y; y=y;

and the conjugation conditions at the common boundary of the layers are

o . 9T, ., .

/\IE—/\ZE—O (y—O, $<O), (3)
o1 a7,

TY=T, M\ ay A2 ay (y 0, z> 0) ( )

Here JA; is the heat conduction coefficient of the material of the first and second layers, respectively (7 = 1,2)
and qj, fj, and +v; are constants (j = 1,2) (a; = 0 when the boundary condition is of the first kind and
B # 0). We seek a solution Tj(z,y) in the form

Ty(z,) = T} (z,y) + Tz, y), (5)

where T}o) (z,y) is a solution of Eq. (1) subject to the boundary conditions (2) and conjugation condition (4)
which are satisfied along the whole line (—oco < z < +00).

The solution T}o)(x, y)is
Tj(o)(x,y) =a;y+6; (j=12)
Here
a1 = (182 — 12$1)/(1B2 — B1Baht — a2B1M1/ A2 — BiBaA1ha/ A2),
by = ((a1 = Brh1)ay —m)/B1, a2 =(A1/A2)ar, b = by
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Conditions (1)—(4) with account of (5) can then be written as (¢ = a1A; = a22)
aT}

aj = ﬂjT; (J = 1a2);
Oy y=y; y=y;
* . *
Ty =X oyl __4 (z < 0);
ay y=0 Al ay y=0 )\2
oTy oTy
vy, =130 A 5 ! 275 £ (z>0)
y=0 y=0 Y ly=0 Y ly=o0
We will seek T}(z,y) in the form (1]
100
* 1 : -1 z
Ti(e0) = 5= [ (4O + Bj(e)e™®)et* dg,
—i00

where A;(¢) and B;(£) are unknown functions (j = 1,2). Using (9), from conditions (6), we obtain
1 P, s e o i\ s
5 / (i€ (A;(6)e™% — B;(€)e™%) — B;(A;(€)e™ + Bj(£)e™¥) )&= dg =0,

—100

whence
Bj(£) = e"i(iajt — B;)/(iej€ + B)A;(6) (7 =1,2).

We now represent conditions (7) and (8) as

100 1 100
= [ K@M =—1, o= [ Xa@a0e =~

—100 —100

100 100 100 A 100
= [HOMm© d= o [HOmOSCE o5 [XOaO d=5% [XOm0 @

—-100 —100 —100 —100

Here

(E) = 1§ — Bj 2:51> (£) — 1§ — B; 2V (5 =
X, = i1 - 2B, v -1+ 2RSS (-1)

Setting A}(£) = X;(£)A;(£), instead of (10) and (11) we have

1 10C
[ AosTde= L =<0y

—$00 /\l
o [ Ao i =L e <o
1 100 1 * £z 1 ¢z
27 / NOX7 (Ai1(e df—— / Vo)X )AL (&)t " dE (2 > 0);
zm / A(§)etr de = 2= Az A3(&)efTdE (3> 0).

(9)

(10)

(11)

(12)

(13)

(14)

(15)

If we now set A3(£) = A /A2Aj(€), condition (15) is satisfied automatically and conditions (12) and (13)
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reduces to one. As a result, we obtain the following two conditions:
1 100 ] q
5 [ Al de= L (@ <o) (16)
—100
1 100
— [ FOA©Ld=0 (=>0), (17)

—100

where
F(&) = Fo(&)/(F1(§)Fa(6)),
Fo(€) = [(c1€ cos(§y1) — Busin(€y1)) (e sin(€y2) + B2 cos(Ey2))
—y(eaé sin(€y1) + Bz cos(€y1))(2€ cos(§yz) — Bz sin(y2))]/¢, (18)
Fi(€) = aa€sin(€yr) + Prcos(§y1),  Fa(€) = aalsin(€ya) + B2 cos(yz).

The functions F;(€) (j = 0,1, 2) are entire functions of the first order [1]; moreover, each of them is an
even function of £. Hence, the Weierstrass representation for each of them according to Hadamard’s theorem
[2] has the form

7O =& T (1-/82).
m=1

Here b is a constant and &, are zeros of the function f(§) (m=1,2,...,00).
The function F(£) can be written in the form

F(€) = FH(&)F(8), (19)

where

+ 00 o0 o0
PHO) = gt = o) T1 (- ¢rat) /(I (- erat) T (- eret))

- FHOF() m=1 (20)
) = —FO_—(Q— = 3 —¢fa_ i —-¢/a,, T —£/a_ ;
FO= more = L0 =)/ (,El(l €fom) 11 (1 =/ ) )

aﬁj are zeros of the functions Fj(¢) lying on the right-hand and left-hand side of the complex plane,
respectively (j = 0,1,2 and m = 1,2,...,00), and g(¢{) is an entire function without zeros in the whole
complex plane.

We set Aj(£) = a/(£F7(£)) (a is an unknown constant) and substitute this into expression (17). As a

result, we have

] 51;;-_ / aF(f)/(fF‘(E))ef”d£=§‘;’r—i_ / FHe)Jeef=dt  (z > 0). (21)

For £ > 0 in the region Re ¢ < 0, the holomorphic function F*(£)/¢ has no poles and satisfies the conditions
of Jordan’s lemma [1]. Indeed, in the region Reé < 0, as |£] — oo, the asymptotic formula

F(&)=FT()F~ () ~(1~-7)
is valid, whence, taking into account (19) and (20}, we infer that
F*(€) ~ F~(£) ~ /(1 — %) = const,
as €] — oo (Re¢ < 0) and hence |€1|im (F*(€)/€) = 0 and the integral appearing in (21) vanishes. Then,
—00
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.substituting A](¢) = a/(F~(£)¢) into (16), we obtain
1 100 q
— - Tde = -2 .
o | /@) d = (2 <0)
—3$00
Hence, since the function also satisfies the conditions of Jordan’s lemma for Reé > 0 and has a single pole of
the first order at £ = 0, we have a = ¢/);1. Bearing (10) in mind, we write the expression for T7(z,y):

T} (z,y) = 2,1”_70 (450 + Bj(¢)e™)ef= dg
= 51.—_/00( 9 4 e R (o — B;)(ict; + By)) [ X;(6) A3 (£)e®*
S :)/«, (i cos(€(y — 13)) + B sin(€(y — 15))) /(@ F€) P~ (€))% de
= %) /°° (ag€ cos(6(y — u3)) + B sin(e(y — 1)) Fr(€) /(€ FF(€) P (6)) £ de

(k=1,ifj=2and k=2,if j =1).

The functions F;(§) (j = 1,2) are entire functions of the first order [2] and each of them is an even
function of ¢; therefore, according to Hadamard’s theorem the Weierstrass representation for each of them
has the form

2
= d; H —&/al;),
where d; is a constant and a,,; are zeros of the function Fj(€) (m = 1,2,...,00). Using the expressions for

F;(€) we readily obtain
d; = lim Fy(6) = bm £ (€) = F(0) = 4; (= 1,2)

As a result, according to the residue theory, for z > 0 (Re{ < 0), we obtain

Ti(z,y) = _ngﬂ_; il{ [aja;;o cos (ar_nO(y - y,‘)) + B; Sin(ar_no(y - !/j))]X(“Eo)/(a;;())zea’—"oz}
Here
Xw) = I (1 - v/azs) / ( I (1-v/at;) II (- y/a;o));
m=1 m=1 m=]

a prime indicates that terms in the products are dropped if they are equal to zero; ai~ are zeros of the
functions Fj(¢) (7 =0,1,2 and m = 1,2,...,00) lying on the right-hand and left-hand complex half-planes,
respectively.

For z < 0 (Reé > 0) we have

{5 oot (ol ) Ay o ) o) (a2, e 450 - b

So far we have assumed that ¢ = const. If ¢ appearing in formulas (6) has the form

T]}'t(xv y) ==

qg= AlaTZ(O)/ay = /\23 /3y = qoep"x,
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where pp, > 0 (z < 0), it is sufficient to set A}(¢) = a/(F"(f)(f —pn)). Taking into account that the function
1(€) now has an additional pole at the point { = py, after analogous calculations (pn # amj; n,m =1,2,..
7 =0,1,2), we find

T}‘(z,y)=,\.iﬁj{§ (3970 005 (amay = 9,)) + B sin(armaly — 43))] X (aa)e® mo”/(amo)z} (>0 (22

13009 = 5l S [t (ot 0 ) + Ayt 0| K o ((02,) (e - 20)

m=1

+ [@iPn cos(pn(y — v5)) + Bisin(pa(y — v7))| X (pa)e ™ [0} + Bi(y — y;) + aj} (z<0).  (23)

Since any function f(t) that is continuous on the interval [0,1] can be approximated with any degree of
N
accuracy by a polynomial of the form Qy(t) = Z: qutP™ (177 is a complete set of functions in the interval
[0,1] and p, are real), introducing new variable t= e’ (z < 0), we write the function g¢(z) as
q(z) = q(Int) = Z qitP* = Z qrePF®.
k=0 k=0

The solution then is represented by a superposition of solutions (22) and (23). The function ¢(z) is not a
constant if 4; are functions of z. Then it is sufficient to apply a Laplace transform with respect to the =

coordinate to determine T}O)(x,y) and ¢(z) = /\IBT(O)/Byl . Summing solutions for (22) and (23), w

obtain the desired solution for ¢(z) = E qrePk®. Figure 1 shows the temperature Tj(z,y) at the point y = 0

as a function of = on different sides of the boundary for the case of o; = 0, 85 =1 (j = 1,2), 1 = -1,
Y2=0,7v=1, hy =1, hg = 2 (curves 1 and 2 represent the temperature distribution at the external surfaces,
curves 3 and 4, on the sides of the slit, and curve 5, in the ideal contact region).
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